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ABSTRACT

RESTRUCTURING CONTROLLERS TO ACCOMMODATE
PLANT NONLINEARITIES

FEBRUARY 2018

KUSHAL SAHARE

B.Tech., INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

M.S.M.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Kourosh Danai

This thesis1 explores the possibility of controller restructuring for improved
closed-loop performance of nonlinear plants using a gradient based method of
symbolic adaptation- Model Structure Adaptation Method (MSAM). The adaptation
method starts with a controller which is a linear controller designed according to
the linearized model of the nonlinear plant. This controller is then restructured
into a series of nonlinear candidate controllers and adapted iteratively toward a
desired closed-loop response. The noted feature of the adaptation method is its
ability to quantify structural perturbations to the controllers. This quantification
is important in scaling the structural Jacobian that is used in gradient-based adap-
tation of the candidate controllers. To investigate this, two nonlinear plants with
unknown nonlinearities viz., nonlinear valve and nonlinear inverted pendulum
are chosen. Furthermore, the properties of restructured controllers obtained for
two systems, stability, effect of measurement noise, reachability, scalability and al-
gorithmic issues of MSAM are studied and compared with the starting controller.

1The work in this thesis formed the basis of a journal publication [1]
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CHAPTER 1

INTRODUCTION

When the agility of feedback can compensate for mild plant nonlinearities, lin-

ear controllers designed according to the linearized model of the plant will suf-

fice [4]; and in cases when the plant nonlinearities are too severe for a single linear

controller across the range of operating points, gain scheduling can be employed

to incorporate different linear controllers at different operating points [2]. The leap

to nonlinear control can be made, for improved performance, when accurate mod-

els of plant nonlinearities exist to allow nonlinear controller design [5, 6, 7]. This

thesis offers an alternative method of empirical controller development wherein

a starting, generally linear, controller is expanded into a nonlinear controller with

coupled components to attain improved closed-loop performance.

The most common platform for empirical development of nonlinear controllers

has been neural networks [8, 9]. However, these controllers have a “black box”

form precluding analysis that requires the transparency of form/structure. In

an attempt to attain transparency, one can use symbolic regression wherein the

process variables, inputs, and parameters (constants) are treated as symbols and

integrated as blocks to form candidate models. Free of restrictions on the form

(structure) of candidate controllers, the search can be conducted by genetic pro-

gramming (GP) for controllers generating best-fit closed-loop outputs to the de-

sired response [10]. However, symbolic regression is computationally expensive,

requiring anywhere from thousands to billions of evaluations. While so many eval-

uations can be accommodated in open-loop by algebraic manipulation of the time

1
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series representing measured observations and their derivatives, they are infeasi-

ble in closed-loop wherein the system response needs to be obtained via simulation

for each adopted controller. As such, the use of evolutionary and/or genetic algo-

rithms in controls has been confined to parameter optimization [11, 12] or search

among a limited number of structural components [13].

Whereas the method proposed in this thesis also restricts the search space to

a limited number of candidate controllers, it formulates them by restructuring an

initial controller instead of relying on pre-formulated fixed structures. Further-

more, it incorporates pliability in these restructured controllers by inclusion of ex-

ponents that can be adapted toward their suitable form. The adaptation of these

exponents, which amounts to a local search around the initial controller, is per-

formed by the Model Structure Adaptation Method (MSAM) [14]. A key feature of

MSAM, that enables the implementation of gradient-based adaptation as its search

mechanism, is its quantification of structural changes to the controllers. MSAM

uses this metric to scale the structural sensitivities such that they will remain ro-

bust to parametric error during adaptation. The proposed controller restructuring

is schematized in Fig. 1.1, which resembles the strategy used in iterative feedback

tuning (IFT) [15, 16, 17, 18]. In this scheme,G represents the nonlinear plant andGc

the controller. Whereas in IFT the parameters of Gc are adjusted/tuned, in MSAM

a candidate set of controller formats with pliable structures are considered which

are adapted iteratively to produce the desired response yd to the reference input

r. Therefore, MSAM differs from iterative tuning in that it changes the controller

structure instead of just its parameters toward the desired response. In Fig. 1.1,

u denotes the control effort, n the measurement noise, and ỹ represents the error

between the closed-loop response of the system ŷ and its desired response yd.

2
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Figure 1.1. Contoller adaptation by MSAM
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CHAPTER 2

THE MODEL STRUCTURE ADAPTATION METHOD (MSAM)

2.1 Introduction

Model structure adaptation method is a gradient-based method of symbolic

adaptation for continuous dynamic models [14, 19]. This method starts with an

initial model (e.g., derived from first-principles) and amends its components in

symbolic form. The salient feature of this method is its use of a metric for symbolic

changes to the model. This metric, which is essential for defining the structural

sensitivity of the model, not only accommodates algebraic evaluation of candidate

models in lieu of less reliable simulation-based evaluation but also makes possible

the implementation of gradient-based optimization in symbolic adaptation.

2.2 Formulation

In MSAM, the initial controller u = MΘ is considered to be the weighted sum

of individual components Mi, as

MΘ =
Q∑
i=1

θiMi = ΘTM (2.1)

where M = [M1, . . . ,MQ]T comprises components Mi that are products of com-

binations of state variables xi included in the state vector x = [x1, . . . , xn]T . For

instance, in context of a PID controller, the initial controller is

M
Θ̃

= Kpε(t) +Ki

∫
ε(t)dt+Kddε/dt (2.2)

4
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where ε(t) = r(t) − ŷ(t); M = [M1 M2 M3]
T = [ε(t),

∫
ε(t)dt, dε/dt]T with the cor-

responding parameter values Θ = [θ1 θ2 θ3]
T = [Kp, Ki, Kd]

T . The fidelity of the

controller can be evaluated by how closely the closed-loop response of the nonlin-

ear plant matches the desired response yd, as represented by their difference ỹ
M̂

where M̂ denotes the candidate controller. The fitness function in MSAM is often

defined as

F =
ρ(ŷ, yd)∑N
k=1 |ỹ(tk)|

(2.3)

where ρ(ŷ, yd) denotes the correlation coefficient between the closed-loop response

ŷ and the desired response yd, computed as

ρ(ŷ, yd) =
Cŷyd

σŷσyd
(2.4)

where Cŷyd is the covariance of ŷ and yd, and σ. denotes standard deviation. The

larger the fitness value, the closer the closed-loop response is to its target, therefore,

this fitness function is used primarily to evaluate the fitness of various candidate

controllers in the first stage of adaptation by MSAM. It should be noted here that

ŷ is not only a function of the controller structure M̂ and its parameters Θ but also

the reference r, the plant G, and noise n. Given that ỹ, in addition to its role in

the fitness function, is the basis for adaptation of the candidate controller M̂, it is

imperative to have persistence of excitation [8] by ỹ(t).

With the commonality of r, G, and yd among the candidate controllers, the out-

put error ỹ is a function of the candidate controller M̂ and its parameters Θ. If one

assumes that an ideal controller M∗ with the ideal parameters Θ∗ exists that could

generate the desired response yd, then the output error ỹ is mainly caused by the

structural mismatch; i.e., M̃ 6= M∗ as well as the parametric error ∆̃Θ = Θ∗−Θ̃. In

IFT [15, 20], the controller form is assumed correct and the model parameters are

tuned to reduce ỹ. However, when the controller form is incorrect (i.e., M̃ 6= M∗),

5
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parameter tuning will be superficial. Since structural accuracy of the controller

transcends its parametric accuracy, MSAM focuses on structural adaptation of Gc.

Controller restructuring in MSAM is performed by adjusting each nominal

component of the initial controller M̃i as M̃i =⇒ M̃if̂i(x)γi to yield candidate con-

trollers of the form

M̂
Θ̃

=
Q∑
i=1

θ̃iM̃if̂i(x)γi = Θ̃TM̂ (2.5)

where M̂ =
[
M̃1f̂1(x)γ1 , . . . , M̃Qf̂Q(x)γQ

]T
, the f̂i are functions of individual state

variables, such as |xi|, sign(xi), cos(xi), etc., considered to improve the controller

form, and the γi ∈ < are exponents to achieve two goals:

(i) to mitigate the discrete nature of the introduced model change, and

(ii) to provide a mechanism for calibrating the degree of change to individual

model components for higher granularity.

For instance, to restructure a PID controller into the nonlinear form

Kpε(t) |dε/dt|γ +Ki

∫
ε(t)dt+Kddε/dt (2.6)

, the first component M̃1 = ε(t) needs to be changed to M̂1 = ε(t) |dε/dt|γ . As-

suming that the ideal controller structure M∗ can be reached by the introduction

of adjustments f̂ to the initial controller structure M̃, the ideal controller will have

the form

M∗ =
[
M̃1f

∗
1 (x)γ

∗
1 , . . . , M̃Qf

∗
Q(x)γ

∗
Q

]T
(2.7)

Hence, the adaptation strategy entails applying adjustments of the form (2.5)

to individual components of the initial controller M̃ during a round robin stage,

6
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and then adapting the exponents γi to fine-tune the controller structure. The goal

of MSAM is to mainly find the form

f∗ =
[
f ∗1 (x), . . . , f ∗Q(x)

]T
(2.8)

in the first stage of adaptation, called round robin, and then fine-tune the expo-

nents γi, to achieve Γ = [γ1, . . . , γQ]T =⇒ Γ∗ =
[
γ∗1 , . . . , γ

∗
Q

]T
. For illustration

purposes, selection of the best candidate controller in the first stage, followed by

its adaptation in the second stage, is shown in Fig. 2.1. The plots in the first stage

represent the fitness values of the candidate controllers during the first 15 itera-

tions of adaptation. The under performing controllers are discarded for the sec-

ond stage where adaptation is continued toward fine-tuning the exponents of the

best-fit controller.

For gradient-based search in the round robin stage, the output error ỹ(t) is de-

fined by its first-order approximation at the nominal parameter values θ̃i, and ex-

ponents γ̂i, as

ỹ
M̂

(t) = yd(t)− ŷ
M̂

(t)− ỹθ ≈
Q∑
i=1

∆̂γi

(
∂ŷ

M̂
(t)

∂γi

)
= ỹγ = Φγ∆̂Γ (2.9)

where ỹθ =
∑Q
i=1 ∆̃θi

(
∂ŷ

M̂
(t)

∂θi

)
denotes the parametric error. Since potential collinear-

ity between θi, γi pairs often hinders their concurrent adaptation, only the expo-

nents are adapted iteratively for their larger influence on the error (in the absence

of bifurcation) [14, 19]. Here, a key contribution of MSAM [14] is its introduction

of the ‘model perturbation magnitude’ δMi to quantify model changes affected by

perturbations to the exponents γi in Eq. (2.5), as

δMi =

∑N
k=1

∣∣∣∣∣∣∣∣∂ŷ(tk,Γ̂+δγi,Θ̃)
∂Θ

− ∂ŷ(tk,Γ̂,Θ̃)
∂Θ

∣∣∣∣∣∣∣∣
2∑N

k=1

∣∣∣∣∣∣∣∣∂ŷ(tk,Γ̂,Θ̃)
∂Θ

∣∣∣∣∣∣∣∣
2

(2.10)

7
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to be used in the scaling of structural sensitivity, as

∂ŷ(t, Γ̂, Θ̃)/∂γi ≈
(
ŷ(t, Γ̂ + δγi, Θ̃)− ŷ(t, Γ̂, Θ̃)

)
/δMi (2.11)

in lieu of δγi in the denominator of the finite difference approximation of the output

sensitivity.

The availability of the Jacobian Φγ enables estimation of the exponential errors

∆γi according to nonlinear least-squares, as

∆̂Γ = [∆̂γ1, . . . , ∆̂γQ]T = (ΦT
γΦγ)

−1ΦT
γ ỹ

N (2.12)

and consequent adaptation of the exponents, as

γi(q + 1) = γi(q) + µ(q)∆γi(q) (2.13)

where ỹN is the vector of sampled output error, q is the iteration number and µ(q)

is the adaptation step size, determined at each iteration.

0 5 10 15 20 25 30 35 40 45
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Robin

Figure 2.1. Illustration of candidate model selection by MSAM in the round robin
stage, followed by further adaptation of the selected model in the second stage, as
represented by the inverse of the fitness value for each model
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CHAPTER 3

STUDY PLATFORMS

3.1 Study Platforms

Two closed-loop platforms are considered for studying the feasibility of MSAM.

The first platform, as shown in [2], consists of a linear plant that is actuated by a

nonlinear valve, representing a compartmentalized plant nonlinearity. Åström and

Wittnemark [2] capitalize on knowledge of the actuator nonlinearity to cascade the

linear (proportional plus integral (PI)) controller with the inverse function of the

actuator model, so as to compensate for its nonlinearity. The PI controller was re-

structured by MSAM to replace the controller and cascaded inverse function. The

second platform is the benchmark control of an inverted pendulum on a cart which

presents an inherently nonlinear and unstable plant commonly controlled within

small deviations from the vertical position. These two platforms are used to study

the characteristics of the restructured controllers.

3.1.1 Nonlinear Actuator

The first platform, adopted from [2], is shown in Fig. 3.1 where the plant con-

sists of a nonlinear actuator, proceeded by a linear process. The customized con-

troller discussed in [2] is a PI controller with the parameters Kp = 0.1 and Ti = 0.1

cascaded with a nonlinear function that approximates the inverse of the actuator

model. The nonlinear actuator model, the transfer function of the process, and the

inverse actuator model used in [2] are shown in Table 3.1.

As discussed in [2], and shown in Fig. 3.2, the above closed-loop system gen-

erates different responses at different reference values, representing the limitation
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Figure 3.1. Block diagram of the first platform, consisting of a linear plant actuated
by a nonlinear valve (Courtesy of Åström and Wittnemark [2])

of the inverse approximation f̂−1 in neutralizing the actuator nonlinearity f(u)

at different reference values. A drawback of this solution is rooted in the devia-

tion of f(f̂−1(c)) from the ideal value of 1 at different reference values, except at

r = 1 where the inverse function is exact and the response obtained is desired. An-

other drawback of this solution is its dependence on the accuracy of the modeled

nonlinearity. To evaluate the significance of this dependence, the closed-loop step

responses of the system at different reference values are compared in Fig. 3.3 with

the step responses of two other systems representing slightly different actuator

nonlinearities: f(u) = u3.5 and f(u) = u4.5. The results clearly indicate the consid-

erable influence of misrepresented nonlinearity on the responses of the customized

solution, particularly at higher reference values.

Table 3.1. Models of the individual blocks [2] in Fig. 3.1

Nonlinear Actuator v = f(u) = u4

Process G0(s) = 1
(s+1)3

Inverse Model f−1(c) =

{
0.433c if 0 ≤ c < 3
0.0538c+ 1.139 if 3 ≤ c ≤ 16

10
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Figure 3.2. Step responses and control efforts of the closed-loop customized solu-
tion in Fig. 3.1 at different reference magnitudes

3.1.2 Inverted Pendulum on a Cart

The second platform, obtained from [3], is the classical inverted pendulum on

a cart, as shown in Fig. 3.4 and modeled in Table 3.2. In this model, x(t) denotes

the position of the cart in the x direction, θ(t) denotes the angle of the pendulum

from vertical, and u(t) is the force applied to the cart. This model was simulated

with the cart mass m′ = 0.9 kg, the pendulum mass at the end of the massless rod

represented as m = 0.1 kg, and the pendulum length represented as l = 0.235 m.

Table 3.2. Model of the inverted pendulum on a cart from [3]

ẍ = u+ml(sin(θ))θ̇2−mg cos(θ) sin(θ)
m′+m−mcos2(θ)

θ̈ = u cos(θ)−(m′+m)g sin(θ)+ml(cos(θ) sin(θ))θ̇
mlcos2(θ)−(m′+m)l

The feature of interest to our study in this platform is the effectiveness of re-

structured controller in coping with plant nonlinearity beyond angles regulated

by the linear controller. At small θ values, like those caused by low magnitude

impulses to the pendulum, a linear controller, by state feedback, for example, can
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Figure 3.3. Effect of modeling inaccuracy on the step responses and control efforts
of the closed-loop solution in Fig. 3.1

Figure 3.4. Inverted Pendulum on a cart used as the plant in the second study
platform

maintain the upward position of the pendulum. But the nonlinearity at larger θ

values will disturb the performance of linear control. This point is shown for a

linear state-feedback controller of the form

u(t) = −K1x−K2ẋ−K3θ −K4θ̇ (3.1)

with the gains [K1, K2, K3, K4] = [−2.00,−3.84, 33.84, 7.22] locating the closed-loop

poles at s1,2,3,4 = −1,−2,−4.73,−4.73 according to the linearized model of the pen-

dulum. The closed-loop impulse responses of the pendulum to different impulse
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magnitudes applied to the pendulum using this controller are shown in Fig. 3.5.

It clearly indicates the effect of nonlinearity on the performance of the linear con-

troller at higher impulse magnitudes.
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Figure 3.5. Closed-loop impulse responses (y = θ) and control efforts of the in-
verted pendulum on a cart controlled by linear state feedback. Impulse magni-
tudes are in newton.
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CHAPTER 4

RESTRUCTURED CONTROLLER

4.1 Restructured Controller

Controllers were restructured by MSAM for the two platforms according to the

configuration in Fig. 1.1. The desired response yd used for the nonlinear actuator

was the step response of a standard second order model, the one for the inverted

pendulum on a cart was the impulse response of the linear controller to the lowest

magnitude impulse (δ = 15 N) applied to the pendulum. The coupling functions

f̂i in Eq. (2.5) were the absolute values of the state variables, to avoid imaginary

numbers due to exponentiation of negative numbers. The restructured controllers

obtained for the above platforms are discussed separately.

4.1.1 Controller for the Nonlinear Actuator

A feature of restructured controllers is their case-specificity, which is rooted in

the search mechanism for the exponents γi in Eq. (2.5). As in any gradient-based

search, the robustness of the solution and its form not only depend on the convex-

ity of the error surface presented during training, but also the search mechanism

(NLS, in this case). As such, the choice of the desired response yd plays a central

role in the formulation of the solution. It is observed, for instance, that the more

distant is the target from the initial closed-loop response, the better chance there

is of finding a radically restructured controller. For case-specificity of restructured

controllers, consider the controllers obtained at different reference magnitudes for

the nonlinear actuator in Table 4.1. Here we arbitrarily used the step response of a
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standard second order model (ζ = 1, ωn = 0.17) as the desired response and the PI

controller: Kpε(t) + Ki

∫
ε(t)dt as the initial controller amended with the functions

[f1, f2] = [|ε|, |
∫
εdt|] in Eq. (2.5) for its restructuring. Each candidate controller was

adapted for 15 iterations in the round robin phase and the best controller was fur-

ther adapted for 20 more iterations in the final phase. Although the forms of the

restructured controllers in Table 4.1 are the same for reference magnitudes of 1, 2,

and 4, in one form, and for reference magnitudes of 3 and 5, in another form, they

are not uniform across all reference magnitudes.

Table 4.1. Restructured controllers obtained at different reference values for the
nonlinear actuator

Reference Restructured Controller
Value

1 Kpε (|
∫
εdt|)0.27 +Kisgn(

∫
εdt) (|

∫
εdt|)0.80

2 Kpε (|
∫
εdt|)0.19 +Kisgn(

∫
εdt) (|

∫
εdt|)0.82

3 Kpsgn(ε) |ε|1.15 +Kisgn(
∫
εdt) (|

∫
εdt|)0.81

4 Kpε (|
∫
εdt|)0.15 +Kisgn(

∫
εdt) (|

∫
εdt|)0.78

5 Kpsgn(ε) |ε|1.08 +Kisgn(
∫
εdt) (|

∫
εdt|)0.78

To ameliorate their uniformity, restructuring of the controller for the first plat-

form was performed with a staircase reference profile that included three reference

magnitudes(viz., 1, 3, & 5), as shown in Fig. 4.1. Controller restructuring resulted

in

u(t) = Kpε+Ki (
∫
εdt) =⇒

u(t) = Kpε(t) (|
∫
ε(t)dt|)0.04 +Kisgn(

∫
ε(t)dt) (|

∫
ε(t)dt|)0.80 (4.1)

with its response named “restructured” in Fig. 4.1. The response of the restruc-

tured controller is compared in Fig. 4.2 with those of the initial (PI) and customized

(PI controller cascaded with the inverse model of the actuator) controllers. The re-

sults indicate more consistent rise times of the initial and restructured controllers
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than the customized controller. They also indicate the far smaller overshoot of the

restructured controller than the initial controller’s, as the result of restructuring

toward the desired response.
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Figure 4.1. Step responses and control efforts of the restructured and initial (PI)
controllers from the first platform shown with the desired response used for con-
troller restructuring

As discussed earlier, an important feature of MSAM is the use of δMi in Eq. (2.10)

for scaling the columns of Φγ in Eq. (2.11). A direct ramification of this scaling is

ought to be the better quality of Φγ , that results in improved estimates of ∆̂Γ when

used in Eq. (2.12). The quality of Φγ is illustrated by the range of condition num-

bers (λmax/λmin) of Φγ in Table 4.2, computed with and without scaling by δMi at

different reference magnitudes with the nonlinear actuator. Since the closer is the

condition number to unity the more separate (less collinear) are the columns of the

matrix [21], the smaller condition numbers in Table 4.2 for Φγ when scaled by δMi

should result in improved restructured controllers. This is verified by the smaller

lowest absolute output error sums in Table 4.2 obtained during adaptation by scal-
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Figure 4.2. Step responses of the initial and restructured controllers and their con-
trol efforts from the first platform at different reference magnitudes as well as those
of the customized controller in Fig. 3.1

ing. Supported by these results, the solutions shown henceforth are obtained with

scaled Φγ .

Table 4.2. Range of condition numbers of the structural sensitivity matrix Φγ and
the lowest absolute output error sum found during controller restructuring of the
first platform with and without scaling of Φγ by δMi from Eq. (2.10)

Reference Condition Number of Φγ Lowest Error (min
∑N
i=1 |ỹ(ti)|)

Magnitude unscaled scaled unscaled scaled
1 1.61 - 12.16 2.02 - 2.07 2.61 1.35
2 1.69 - 6.95 1.80 - 2.68 4.37 2.50
3 2.13 - 4.94 1.07 - 4.69 6.10 2.65
4 10.03 - 14.05 1.09 - 2.67 8.18 3.99
5 13.37 - 13.53 1.09 - 4.48 11.38 6.10

4.1.2 Controller for the Inverted Pendulum on a Cart

For the inverted pendulum on the cart, the candidate controllers were gener-

ated from the state feedback controllerK1x+K2ẋ+K3θ+K4θ̇ using [f1, f2, f3, f4] =[
|x|, |ẋ|, |θ|, |θ̇|

]
in Eq. (2.5). To invoke the nonlinearity of the pendulum, an impulse
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magnitude of δ = 18 (see Fig. 3.5) was applied to the cart, using the closed-loop

response of the linear controller to an impulse magnitude of δ = 15 as the desired

response. Each candidate controller was adapted for 15 iterations in the round

robin phase and the best controller was adapted for 50 iterations in the final phase.

The restructured controller had the form

u(t) = −K1x(t)−K2ẋ(t)−K3θ(t)−K4θ̇(t) =⇒ u(t) = −K1x(t)
∣∣∣θ̇(t)∣∣∣0.04−

K2ẋ(t)
∣∣∣θ̇(t)∣∣∣0.02 −K3sgn(θ(t)) |θ(t)|0.92 −K4sgn(θ̇(t))

∣∣∣θ̇(t)∣∣∣1.03 (4.2)

The responses and control efforts of the restructured and linear controllers at the

impulse magnitude of δ = 18 are shown in Fig. 4.3 along with the desired re-

sponse. They indicate the more rapid response than its linear counterpart of the

restructured controller in stabilizing the pendulum.
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Figure 4.3. Impulse responses and control efforts of the linear and restructured
controllers from the inverted pendulum on a cart (second platform) shown with
the desired response used for controller restructuring

As benchmark, the impulse responses of the inverted pendulum on a cart with

the restructured controller (Eq. (4.2)) are compared with those of the linear con-

troller at different impulse magnitudes in Fig. 4.4. Both the responses and control

efforts of the restructured controller are significantly more robust than those of the
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linear controller at different impulse magnitudes. This robustness is due in part to

the quicker response of the restructured controller to state changes in the system,

providing the capacity to cope with impulses of higher magnitude, as discussed in

the next section.
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Figure 4.4. Impulse responses and control efforts of the linear and restructured
controllers from the inverted pendulum on a cart at impulse magnitudes of 15-20
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CHAPTER 5

ANALYSIS OF THE RESULTS & DISCUSSION

5.1 Analysis

The case study results obtained can be used to analyze several aspects of the

restructured controllers by MSAM. One such aspect is the response of the restruc-

tured controllers to conditions absent in training, such as measurement noise, dis-

turbances, and reference magnitudes beyond those used for training. A second as-

pect is the sensitivity of the restructured controllers to training conditions. A third

aspect is the form and behavior of restructured components of the controllers in

comparison to their initial counterparts.

5.1.1 Unrepresented Conditions

• Noise: To evaluate the performance of restructured controllers in presence of

noise, band-limited noise at the signal-to-noise ratio of 18 (at r = 1) to 33 (at

r = 5) was added to the output of the plant in the nonlinear actuator plat-

form. Controller responses were tested ten times for different random noise

cases, as shown in Fig. 5.1. The results indicate similarly affected closed-loop

responses by measurement noise of both the restructured and customized

controllers with smaller variations observed in the control efforts.

• Disturbance rejection: The disturbance rejection capacity of the controllers

were evaluated in platform one with unit step disturbances applied before

and after the plant G0(s) in Fig. 3.1. The closed-loop responses of both the

restructured and customized controllers are shown in Fig. 5.2. The results
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Figure 5.1. Closed-loop step response and control effort ranges of the first platform
by restructured and customized controllers in presence of additive band-limited
measurement noise at the approximate signal-to-noise ratios of 18 at r = 1 to 33 at
r = 5

indicate much more agile disturbance rejection by the restructured controller

at higher reference magnitudes, replicating the faster step response of these

controllers at higher reference magnitudes in Fig. 4.2.
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Figure 5.2. Closed-loop responses and control efforts of the first platform by re-
structured and customized controllers to unit step disturbances before G0(s) in
Fig. 3.1 (at time 100) and after G0(s) (at time 200)

• Different reference magnitude: To evaluate the controllers’ regulation capacity

of the first platform for levels not encountered in training, the closed-loop

step responses of the restructured controller are compared to those of the cus-
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tomized controller at step sizes of 6-15 for the nonlinear actuator in Fig. 5.3.

The results indicate that the restructured controller starts having oscillatory

behavior at step sizes of 9 and higher, while the customized solution provides

continually increasing sluggish response at these higher steps. Similarly, the

closed-loop impulse responses of the inverted pendulum on a cart with the

restructured and linear controllers were obtained at impulse magnitudes of

21-33. The linear controller was found to be deficient in maintaining upward

position for the pendulum for impulse magnitudes of 27 and higher. The

responses obtained with the restructured controller for impulse magnitudes

of 27-33 are shown in Fig. 5.4. The results in Fig. 5.4 reveal the ability of

the restructured controller in maintaining a stable response under conditions

beyond the capacity of linear control.
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Figure 5.3. Closed-loop responses and control efforts of the first platform by re-
structured and customized controllers at higher step sizes (6-15) than those (1-5)
used for restructuring

• Modelling uncertainties: To evaluate their robustness restructured controllers

to modeling uncertainty, the closed-loop responses for the nonlinear actuator

platform were generated first with the actuator nonlinearities of f(u) = u3.5

and f(u) = u4.5, as shown in Fig. 5.5. The responses of the restructured con-

troller in Fig. 5.5 are quite similar, unlike those of the customized controller,
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Figure 5.4. Closed-loop impulse responses and control efforts of the inverted pen-
dulum on a cart (second platform) by the restructured controller (obtained at the
impulse magnitude of 20) at impulse magnitudes of 27-33 that are beyond the ca-
pacity of the linear controller

even though the controller was restructured for the nominal actuator model

of f(u) = u4.0. The similarity of these responses indicates the robustness

of the restructured controller to modeling uncertainty of actuator nonlinear-

ity. Second, closed-loop responses of the inverted pendulum on a cart were

obtained with 10%, 20%, and 30% smaller pendulum mass with the linear

and restructured controllers, as shown in Fig. 5.6. The responses with the re-

structured controller in Fig. 5.6 are very close for different pendulum masses,

particularly in comparison to those with the linear controller. They, like those

for the nonlinear actuator, indicate the lower sensitivity of the restructured

controllers to modeling uncertainty.

5.1.2 Sensitivity to Training Conditions

As was discussed earlier and depicted by the controller forms in Table 4.1, the

training conditions influence the controller forms. For the first platform, sensitivity

to training conditions was remedied by adopting a staircase format for restructur-

ing the controllers for the nonlinear actuator. It, therefore, behooves us to examine

the sensitivity of the controller forms to different staircase scenarios. Similarly, the
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Figure 5.5. Step responses and control efforts of the first platform by restructured
and customized controllers (Fig. 3.1) as affected by inaccurate actuator nonlineari-
ties

restructured controller for the inverted pendulum on a cart was obtained at one

impulse magnitude (δ = 18). So it raises the question as how the controller forms

differ at different impulse magnitudes. To this end, the controller forms obtained

for the nonlinear actuator and inverted pendulum from different training cases

are shown in Table 5.1. The results indicate two controller forms found across the

ten different staircase combinations (e.g., 1,2,3; 1,3,5; 2,3,4; etc.) for the nonlinear

actuator and three controller forms for the inverted pendulum at three different

impulse magnitudes. The difference between the controller forms for the nonlin-

ear actuator is in the first component wherein the ε is coupled with itself, in the first

case, and with its integral, in the second case. The restructured controller forms for

the inverted pendulum on a cart, however, are quite diverse and can be compared

better through their simulated behavior, as presented below.

5.1.3 Controller Components

The different forms obtained for the restructured controllers raise two impor-

tant questions: (1) how different are the individual components of the controller

from each other in different forms and from their counterparts in the initial con-
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Figure 5.6. Closed-loop impulse responses and control efforts of the restructured
and linear controllers for the inverted pendulum on a cart with inaccuracies of 0%,
10%, 20% and 30% in the pendulum mass

troller? and (2) how differently do they contribute to the total control effort? To

address these questions, the numerical values of the individual components in

Table 5.1 were obtained from simulation, as shown in Fig. 5.7 for the nonlinear ac-

tuator and in Fig. 5.8 for the inverted pendulum on a cart. The results in Fig. 5.7

indicate that the proportional effect “Kpsgn (ε(t)) |ε(t)|(γ1+1)” provides a smaller

portion of the overall effort than “Kpε(t) |
∫
εdt)|γ1”, and that it has a nonzero initial

value because of its entire dependence on the “ε(t)”. Its counterpart, however, is

initially null due to its dependence on “
∫
εdt” before it rises rapidly to its max-

imum value. The integral components, which have the same form, only differ

slightly due to differences in the magnitude of “
∫
εdt” in the two simulation runs.

The results in Fig. 5.8, however, show a much more nuanced difference of the

controller components. They not only differ in form but also coefficient and expo-

nent values. For instance, consider the similar in form “x effort” of the restructured

controller at the impulse magnitudes of δ = 18 and δ = 20. Simulated in the first

row of Fig. 5.8 (columns 1 and 3), despite their identical form their behavior is

more different from those at δ = 18 and δ = 19 (columns 1 and 2), that are differ-
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Figure 5.7. Components of the control efforts of the linear and restructured con-
trollers with the two forms in Table 5.1 for the nonlinear actuator in response to
step of magnitudes of 1-5
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Table 5.1. Restructured controllers obtained from different staircase scenarios for
the nonlinear actuator and at different impulse magnitudes for the inverted pen-
dulum

Restructured Controller

Step Sizes Nonlinear Actuator
1,2,5 Kpsgn (ε(t)) |ε(t)|(γ1+1) +Kisgn(

∫
εdt) |

∫
εdt|(γ2+1)

all others Kpε(t) |
∫
εdt)|γ1 +Kisgn(

∫
εdt) |(

∫
εdt)|(γ2+1)

Impulse Magnitude Inverted Pendulum on a Cart
δ = 18 K1x(t)

∣∣∣θ̇(t)∣∣∣γ1 +K2ẋ(t)
∣∣∣θ̇(t)∣∣∣γ2 +K3sgnθ(t)|θ(t)|γ3+1

+K4sgn(θ̇(t))
∣∣∣θ̇(t)∣∣∣γ4+1

δ = 19 K1x(t) |θ(t)|γ1 +K2sgn(ẋ(t)) |ẋ(t)|(γ2+1) +K3sgn(θ(t)) |θ(t)|(γ3+1)

+K4θ̇(t) |ẋ(t)|γ4

δ = 20 K1x(t)
∣∣∣θ̇(t)∣∣∣γ1 +K2ẋ(t) |θ(t)|γ2 +K3θ(t) |ẋ(t)|γ3

+K4θ̇(t) |θ(t)|γ4

ent in form. This difference is presumed to be attributed to the confluence of the

other components. Another observation of interest from Fig. 5.8 is the similarity

between the total control efforts, shown in the last row of this figure, despite the

very different behavior of individual components.

5.2 Discussion

• Stability: As with any controller design, of concern is the stability of the

closed-loop systems with restructured controllers. Fortunately, a fundamen-

tal benefit of the proposed restructuring format, as schematized in Fig. 1.1,

is its intrinsic evaluation of the candidate controllers in simulation. Since

MSAM is designed to produce a controller that is at least better than the

initial controller, it disregards any candidate controllers that are inferior in

performance to other candidate controllers or the initial controller. Given

that the instability of the system is a natural criterion in this performance

27



www.manaraa.com

evaluation, the solutions delivered by MSAM are guaranteed to be closed-

loop stable within the bounds of simulation incorporated in restructuring.

Outside these bounds, analysis such as that presented in Section 5.1.1 can be

used to identify instabilities unrepresented during restructuring. Analytical

approaches to stability can also be used, though they are outside the breadth

of present study.

• Reachability: In general, MSAM is additive by nature, designed to adapt a

potentially inadequate initial controller by adding coupling to its individ-

ual components. Accordingly, this method is suited to restructuring initial

controllers that are simple in form, as the restructured controllers are guar-

anteed to be more complex than their initial version. Furthermore, MSAM

operates with the assumption that a potentially superior restructured con-

troller is reachable by prescribed adjustments to the components of the ini-

tial controller. To this end, the selection of the adjustments f̂i in Eq. (2.5) is of

paramount importance.

• Scalability: The scalability of MSAM depends on the number of candidate

controllers considered during the round robin phase. Given that with n ad-

justments applied to Q components, Qn candidate controllers need to be

examined during the round robin phase, the selection process can become

overwhelming if the controllers are examined sequentially. Fortunately, the

examination of individual candidate controllers is independent of the others,

therefore, this phase can be run in parallel, reducing the computation time

to Qn/p, with p denoting the number of processors. For large-scale problems

that cannot be exhaustively searched, one can choose a subset of round robin

controllers that are mechanistically plausible.

28



www.manaraa.com

• Algorithmic issues: As with any other gradient-based search routine, the search

process may be sensitive to several parameters. One such parameter is the

size of the perturbation δγi in Eq. (2.10) used for computing the structural

sensitivities. Another is the initial value of µ in Eq. (2.13) that is adjusted

at each iteration step. A third parameter is the perturbation size of the in-

dividual parameters used for computing ∂ŷ/∂Θ in Eq. (2.10). Yet a fourth

parameter is the fitness function used to evaluate the candidate models, cur-

rently formulated to consider the size of the error as well as the correlation of

the candidate output with its target. Since the sensitivity of the search pro-

cess to these parameters will depend upon the convexity of the error surface,

they need to be evaluated in the context of each problem.
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ẋ
eff

o
rt

(1
9
)

0 5 10
−50

0

50

θ
eff

o
rt

(1
9
)

0 5 10
−50

0

50

θ̇
eff

o
rt

(1
9
)

0 5 10
−50

0

50

Time (s)

T
o
ta
l
eff

o
rt

(1
9
)

0 5 10
−5

0

5

10

x
eff

o
rt

(2
0
)

0 5 10
−20

0

20

40

ẋ
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Figure 5.8. Components of the control efforts of the linear and restructured con-
trollers with the three forms in Table 5.1 for the inverted pendulum in response to
impulse magnitudes of 15-22
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CHAPTER 6

CONCLUSION

A method for restructuring the controllers to accommodate nonlinearities in

plants is been introduced that uses Model Structure Adaptation Method which

is a gradient-based method of symbolic adaptation for continuous dynamic mod-

els. This method generates controllers that are intelligible in form, but more com-

plex than an initial controller that is potentially inferior in performance. This

method benefits from a metric for quantifying structural perturbations to con-

trollers, which it uses to enable its reliable gradient-based adaptation of candidate

controllers derived from the initial controller. The method is demonstrated in ap-

plication to two benchmark problems, rendering solutions that are more effective

in handling with plant nonlinearities and more robust to modeling uncertainties.

The restructured controllers are also found to be more robust to conditions not

introduced in training, including unseen reference magnitudes, noise and distur-

bances. In conclusion, the overall results obtained verify the original hypothesis of

the work.
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